Integrated Pest Management for Greenhouse and Nursery

Steven P. <u>Arthurs</u> <u>sarthurs@tamu.edu</u> Integrated Pest Management is a pest management strategy that uses a combination of tactics* to sustainably reduce pest damage below economic thresholds with least disruption to human and environmental health

*Best Management Practices (BMP)

Traditional Pest Control	Integrated Pest Management
Chemical intensive	Knowledge intensive
Reactive to pest outbreaks	Long-term pest suppression tactics
Killing pests emphasized	Preventing pests emphasized
Most site visits include spraying	Most site visits include inspection/monitoring

Prevention	Sanitation	Cultural
Screens and double access doors*	Footbaths (disinfectant)*	Soilless media
Inspections of plant stock (propagation)	Hand/equipment washing stations (soap)	Solorization
Remove weeds/ mow turf) (pest reservoir)	Remove/dispose of contaminated plants	Mulching
Avoid 'dew point' conditions*	Monitor/treat reclaimed water**	Select resistant plants/cultivars

*greenhouse; ** nursery

Insect screening on equipment

Photos Nexas Greenhouse Systems

Journal of Integrated Pest Management, 2017, Vol. XX, No. X

	-
Insect pest	mm
Aphids	$0.34 - 0.341^{1}$
	0.266×0.818^2
	0.266×0.818^3
Whiteflies	$0.46 - 0.462^{1}$
	0.266×0.818^2
	0.230×0.900^3
Dipteran leafminers	$0.61 – 0.64^{1}$
	0.266×0.818^2
	0.530×0.530^3
Thrips	$0.19 - 0.192^{1}$
	0.150×0.150^2
	0.135×0.135^3

Table 1. Insect exclusion screening hole-size recommendations

¹Bethke and Paine (1991), ²Green-Tek (2015), and ³Stansly and Naranjo (2010).

Sanitation between crop cycles

Nursery planting media under double-layer plastic for solarization. Photo James J. Stapleton.

SCOUTING/MONITORING

Timely detection can answer questions

- 1. What kinds of pests? Something to worry about?
- 2. Are they causing damage?
- 3. When to control (if needed)?
- 4. Have control methods worked?

Good reasons to do this!

- 1. Deal with pest infestation early
- 2. Identify hot spots and reduce pesticide costs
- 3. Record keeping allows prediction of future pest problems

• Visual inspection

Visual inspection

inspect terminals and flip leaves

Scouting container nurseries

Z Pattern

Scouting container nurseries

Triangular Pattern

Useful equipment for sampling, digging and monitoring

Tips for Scouts

- Enter each block looking for abnormal plant symptoms
- Remove some suspect plants out of the pot (check moisture and root decay)
- Examine foliage for trouble, both new and old growth and upper and lower surfaces
- Count or estimate # plants per block with symptoms

Tips for scouts (cont.)

- Look for problem areas (i.e. weeds, irrigation problems or plant spacing)
- Are symptoms irregular (pest problem) or more regular (environmental problem)?
- Flag problem areas for later inspection and pesticide applicator attention
- Record the number and life stage of pests present and any beneficial insects present.

Mites: signs and symptoms

Thrips signs and symptoms

Red-banded thrips on mango

Gladiolus thrips

Photos: bugwood.org

Signs of scales and mealybugs include waxy deposits, chlorotic leaves, honeydew, sooty mold, and distorted growing terminals

- Simple and versatile
- Relative inexpensive
- Use: aphids, thrips, whiteflies, some flies and small moths
- Issues: need frequent replacement, and identification can be difficult due to sticky mess

Yellow sticky card

Ambrosia beetle traps

Scale insect 'tape' trap

Lacebug signs and symptoms

Look for stippling on upper surface and 'tar spots' on lower surface

BIOLOGICAL CONTROL

- 2 types:
- Biopesticides
- Natural enemies (native or released)

What are Biopesticides?

https://www.epa.gov/pesticides/biopesticides

- Microbials: Bacteria, fungi and viruses
- **Biochemicals**: Fermentation products, plant extracts, plant growth regulators, minerals (non-toxic Mode of Action)
- Insecticides, fungicides, nematicides, herbicides, molluscicides, bacteriocides
- Industry growth: CAGR of 14%, reaching \$1.25 billion by 2020 in USA
- > 40 active ingredients registered by EPA for greenhouse/ nursery

Examples of bioinsecticides/miticides registered for greenhouse use

Examples of Biofungicides registered for greenhouse use

Examples of Bioherbicides registered for greenhouse use

Conventional pesticides	Biopesticides
Residue concerns (export)	Few residue concerns
Often toxic to beneficials	Compatible with beneficials and pollinators
Often used curatively	Often used preventatively
12-48 hr REI	4 hr or less REI, no PHI (generally)
Few organic registered	Many organic registered
Often kills a variety of pests	Often more selective
Market 3% growth	Market > 10% growth
Shelf life > 1 year	Shelf life often < 1 year

Releasing Beneficial Insects

 Predators and parasitoids, such as lady beetles and various wasps

Predatory mites

Predatory mites are faster moving and have longer legs compared with plant feeding mites

Spot application versus broadcast application of predator mites. Credit Bill Lewis Delray

Spider Mite Biological Control

- Controlled release sachets
- Sprinkle cans

Buckets

Predator release sachets for hanging baskets..

Slow release sachets of predator mites in hydroponic cucumber

Whitefly Biological Control with parasitoids

- Pupae glued to hanging cards
- Pupae loose in a bottle

Large whitefly infestations may be targeted by the predatory beetle *Delphastus pusillus*, which more quickly reduces whitefly hot spots compared with parasitoids

Using beneficial insects

- Some bigger suppliers:
 - Kopperthttp://www.koppert.com/BioBesthttp://www.biobest.ca/
 - Syngenta Bioline http://www.syngenta.com/
- Successful program requires study and adjustment of the production system
- Reduce or avoid insecticides, particularly broad-spectrum insecticides.
- Achieves long-term, sustainable control of insect and mite pests when executed properly

CHEMICAL CONTROL

- Select appropriate material for the job (use soaps, oils and biologicals where possible)
- Spray during calm weather (drift)
- Use economic or aesthetic threshold to make spraying decisions
- Calibrate based on label rate for that pest
- Spot treat where practicable
- Rotate chemicals by class

Treat pest problem, not the symptom

Sooty mold can persist after pest problem is gone

Try not to spray anything more toxic than needed to contr the target pest(s)

Koppert and Biobest have compatibility guides and APPS, google "side effects guide"

Relatively safe for natural enemies

- Microbials
 - Bt (Dipel), Beauveria (Botanigard), spinosad (Conserve)
- Insect growth regulators IGRs (15-18)
 - bufprofezin (Talus), haflofenzamide (Mach-2)
- Azadirachtin (Aza-direct, Azatin, Molt-X)
- Acequinocyl (Shuttle)
- Chlorantraniprole (Mainspring/Acelepryn)(28)
- Pymetrozine (Endeavor)
- Soaps/oils